3.10.90 \(\int \frac {x^4}{(a+b x^2+c x^4)^{3/2}} \, dx\) [990]

3.10.90.1 Optimal result
3.10.90.2 Mathematica [C] (verified)
3.10.90.3 Rubi [A] (verified)
3.10.90.4 Maple [A] (verified)
3.10.90.5 Fricas [A] (verification not implemented)
3.10.90.6 Sympy [F]
3.10.90.7 Maxima [F]
3.10.90.8 Giac [F]
3.10.90.9 Mupad [F(-1)]

3.10.90.1 Optimal result

Integrand size = 20, antiderivative size = 342 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {b x \sqrt {a+b x^2+c x^4}}{\sqrt {c} \left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {\sqrt [4]{a} b \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{c^{3/4} \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \left (b-2 \sqrt {a} \sqrt {c}\right ) c^{3/4} \sqrt {a+b x^2+c x^4}} \]

output
x*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)-b*x*(c*x^4+b*x^2+a)^(1/2) 
/(-4*a*c+b^2)/c^(1/2)/(a^(1/2)+x^2*c^(1/2))+a^(1/4)*b*(cos(2*arctan(c^(1/4 
)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*ar 
ctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^( 
1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(-4*a*c+b^2) 
/(c*x^4+b*x^2+a)^(1/2)-1/2*a^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1 
/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1 
/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2 
+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(b-2*a^(1/2)*c^(1/2))/(c*x^4+b* 
x^2+a)^(1/2)
 
3.10.90.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.57 (sec) , antiderivative size = 452, normalized size of antiderivative = 1.32 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {4 c \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x \left (2 a+b x^2\right )-i b \left (-b+\sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )+i \left (-b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{4 c \left (b^2-4 a c\right ) \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \sqrt {a+b x^2+c x^4}} \]

input
Integrate[x^4/(a + b*x^2 + c*x^4)^(3/2),x]
 
output
(4*c*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x*(2*a + b*x^2) - I*b*(-b + Sqrt[b^2 
- 4*a*c])*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]* 
Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Ellipt 
icE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 
4*a*c])/(b - Sqrt[b^2 - 4*a*c])] + I*(-b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])* 
Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b 
- 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcS 
inh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b 
 - Sqrt[b^2 - 4*a*c])])/(4*c*(b^2 - 4*a*c)*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])] 
*Sqrt[a + b*x^2 + c*x^4])
 
3.10.90.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 336, normalized size of antiderivative = 0.98, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1440, 1511, 27, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1440

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\int \frac {b x^2+2 a}{\sqrt {c x^4+b x^2+a}}dx}{b^2-4 a c}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt {a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-\frac {\sqrt {a} b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {a} \sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}}{b^2-4 a c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt {a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-\frac {b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}}{b^2-4 a c}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\frac {\sqrt [4]{a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}}{b^2-4 a c}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\frac {\sqrt [4]{a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {b \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}}{b^2-4 a c}\)

input
Int[x^4/(a + b*x^2 + c*x^4)^(3/2),x]
 
output
(x*(2*a + b*x^2))/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (-((b*(-((x*Sq 
rt[a + b*x^2 + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2)) + (a^(1/4)*(Sqrt[a] + Sqrt 
[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*A 
rcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(c^(1/4)*Sqrt[a 
+ b*x^2 + c*x^4])))/Sqrt[c]) + (a^(1/4)*(2*Sqrt[a] + b/Sqrt[c])*(Sqrt[a] + 
 Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*Elliptic 
F[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2*c^(1/4)* 
Sqrt[a + b*x^2 + c*x^4]))/(b^2 - 4*a*c)
 

3.10.90.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1440
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(-d^3)*(d*x)^(m - 3)*(2*a + b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2* 
(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^4/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x 
)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && Gt 
Q[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
3.10.90.4 Maple [A] (verified)

Time = 1.01 (sec) , antiderivative size = 450, normalized size of antiderivative = 1.32

method result size
default \(-\frac {2 c \left (\frac {b \,x^{3}}{2 c \left (4 a c -b^{2}\right )}+\frac {a x}{c \left (4 a c -b^{2}\right )}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(450\)
elliptic \(-\frac {2 c \left (\frac {b \,x^{3}}{2 c \left (4 a c -b^{2}\right )}+\frac {a x}{c \left (4 a c -b^{2}\right )}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(450\)

input
int(x^4/(c*x^4+b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)
 
output
-2*c*(1/2*b/c/(4*a*c-b^2)*x^3+a/c/(4*a*c-b^2)*x)/((x^4+1/c*b*x^2+a/c)*c)^( 
1/2)+1/2*a/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+ 
(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/ 
(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^ 
(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-1/2*b/(4*a*c-b^2)*a*2 
^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^ 
2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b 
+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^ 
(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/ 
2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/ 
c)^(1/2)))
 
3.10.90.5 Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 449, normalized size of antiderivative = 1.31 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=-\frac {\sqrt {\frac {1}{2}} {\left (b^{2} c x^{4} + b^{3} x^{2} + a b^{2} - {\left (a b c x^{4} + a b^{2} x^{2} + a^{2} b\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} E(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - \sqrt {\frac {1}{2}} {\left ({\left (2 \, a b + b^{2}\right )} c x^{4} + 2 \, a^{2} b + a b^{2} + {\left (2 \, a b^{2} + b^{3}\right )} x^{2} + {\left ({\left (2 \, a^{2} - a b\right )} c x^{4} + 2 \, a^{3} - a^{2} b + {\left (2 \, a^{2} b - a b^{2}\right )} x^{2}\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} F(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - 2 \, {\left (a b c x^{3} + 2 \, a^{2} c x\right )} \sqrt {c x^{4} + b x^{2} + a}}{2 \, {\left (a^{2} b^{2} c - 4 \, a^{3} c^{2} + {\left (a b^{2} c^{2} - 4 \, a^{2} c^{3}\right )} x^{4} + {\left (a b^{3} c - 4 \, a^{2} b c^{2}\right )} x^{2}\right )}} \]

input
integrate(x^4/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")
 
output
-1/2*(sqrt(1/2)*(b^2*c*x^4 + b^3*x^2 + a*b^2 - (a*b*c*x^4 + a*b^2*x^2 + a^ 
2*b)*sqrt((b^2 - 4*a*c)/a^2))*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b) 
/a)*elliptic_e(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)) 
, 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) - sqrt(1/2)*((2*a 
*b + b^2)*c*x^4 + 2*a^2*b + a*b^2 + (2*a*b^2 + b^3)*x^2 + ((2*a^2 - a*b)*c 
*x^4 + 2*a^3 - a^2*b + (2*a^2*b - a*b^2)*x^2)*sqrt((b^2 - 4*a*c)/a^2))*sqr 
t(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*elliptic_f(arcsin(sqrt(1/2)*x 
*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2 
) + b^2 - 2*a*c)/(a*c)) - 2*(a*b*c*x^3 + 2*a^2*c*x)*sqrt(c*x^4 + b*x^2 + a 
))/(a^2*b^2*c - 4*a^3*c^2 + (a*b^2*c^2 - 4*a^2*c^3)*x^4 + (a*b^3*c - 4*a^2 
*b*c^2)*x^2)
 
3.10.90.6 Sympy [F]

\[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^{4}}{\left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(x**4/(c*x**4+b*x**2+a)**(3/2),x)
 
output
Integral(x**4/(a + b*x**2 + c*x**4)**(3/2), x)
 
3.10.90.7 Maxima [F]

\[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {x^{4}}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^4/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")
 
output
integrate(x^4/(c*x^4 + b*x^2 + a)^(3/2), x)
 
3.10.90.8 Giac [F]

\[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {x^{4}}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^4/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")
 
output
integrate(x^4/(c*x^4 + b*x^2 + a)^(3/2), x)
 
3.10.90.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^4}{{\left (c\,x^4+b\,x^2+a\right )}^{3/2}} \,d x \]

input
int(x^4/(a + b*x^2 + c*x^4)^(3/2),x)
 
output
int(x^4/(a + b*x^2 + c*x^4)^(3/2), x)